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Abstract

The general ease of availability and strong fundamental science of autologous mesenchymal stem cells has prompted
increasing application of such biologic therapies to address inherent orthopedic challenges of limited vascularity and ability to
self-repair. This article provides a concise review of emerging mesenchymal stem cell applications for bone-related pathologies

including cartilage, avascular necrosis, and fractures.

Introduction

Orthobiologics is a thriving area of research and
development, aimed specifically at preventing further
degeneration and disease by restoring native biology,
structure, and function. Cell-based therapy is a form of
regenerative medicine that introduces new cells to
repair damaged tissue. Because of their general ease of
availability and strong fundamental science, autologous
mesenchymal stem cells are the basis of increasingly
applied biologic therapies to address the inherent or-
thopedic challenges of limited vascularity and ability to
self-repair. Recent research suggests the increasing
importance of subchondral bone integrity in various
orthopedic conditions including osteoarthritis. Bone
marrow lesions seen on T2 MRI sequences in osteoar-
thritic patients demonstrate histology similar to non-
union fractures with necrosis and high osteoclast
activity, and are becoming an important biomarker in
disease progression [1]. This article provides a concise
review of emerging mesenchymal stem cell applications
for bone-related pathologies including cartilage, avas-
cular necrosis (AVN), and fractures.

Cartilage Degeneration

Articular cartilage has a limited intrinsic capacity to
regenerate spontaneously after injury, often leading to

pain and disability. It is generally believed that cartilage
lesions progress to osteoarthritis (OA), prompting in-
tervention for symptomatic lesions to possibly prevent
the evolution to OA as well as to provide symptom re-
lief. Conventional treatment modalities may be useful
for relief of symptoms in the short term; however, they
do not restore the natural articular cartilage integrity or
prevent the final pathway to OA [2].

The avascular, aneural, and alymphatic nature of
articular cartilage hinders repair and regeneration po-
tential once injured. Articular cartilage lesions may be
focal defects resulting from direct trauma, AVN, or
osteochondritis dessicans. These lesions are described
as chondral (limited to the cartilage surface) or osteo-
chondral (extending beyond the calcified cartilage layer
into the subchondral bone). Chondral lesions have a
poor intrinsic ability to repair themselves, as they lack
blood vessels that are critical for circulation and de-
livery of progenitor cells as a part of the normal healing
processes. Instead of progenitor cells filling chondral
defects, cells from the synovial membrane migrate to
the articular cartilage defect and fail to integrate
completely, leading to continued degeneration. In
contrast, osteochondral lesions have access to the bone
marrow, which provides a supply of mesenchymal stem
cells that can create the repair tissue. This tissue,
however, resembles fibrocartilage, which does not
integrate well with the adjacent matrix and does not
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withstand mechanical stress,
degeneration over time.

Articular cartilage lesions may also be more gener-
alized, or diffuse and lacking lesion margins as in
degenerative joint disease or OA. Once early OA begins,
the repair capacity of articular cartilage is further
compromised by a cascade of catabolic events including
inflammation, recruitment of cells that release pro-
inflammatory factors, and proteinase activation that
leads to degeneration and cell senescence with
apoptosis [3]. Disease progression is believed to result
from an imbalance between pro-inflammatory cytokines
(including interleukin [IL]—1a, IL-1, and tumor necrosis
factor—a) and anti-inflammatory cytokines (including
IL-4, IL-10, and IL-1ra) [3]. This cytokine imbalance is
thought to promote proteolytic enzymes, which lead to
cartilage deterioration [4,5].

In addition, the subchondral trabecular bone is
thought to play an important role in OA, as subchondral
bone changes are potentially both a result and a cause
of cartilage loss [1].

resulting in eventual

Mesenchymal Stem Cells—Medicinal Signaling
Cells

Mesenchymal stem cells are a promising therapeutic
for cartilage regeneration. The exact mechanism of ac-
tion of mesenchymal stem cells is not completely under-
stood, but various means have been proposed. Through
paracrine activity, mesenchymal stem cells exhibit a
secretory or “trophic” function, with anti-inflammatory,
immunomodulatory, pro-angiogenic, anti-apoptotic,
anti-fibrotic, and wound-healing properties that have
proliferative effects [2,6]. Mesenchymal stem cells have
been shown to elicit differentiation of resident and non-
resident cells to functional tissue, catalyzing restoration
of degenerative tissue [7,8]. It has been suggested that
perivascular cells, or pericytes, adhere to blood vessels
and act as 1 of our body’s largest reservoirs for mesen-
chymal stem cells. After trauma, soluble factors within
the perivascular space cause the release of pericytes from
microvessels. Pericytes have been described as “medici-
nal signaling cells” once released, where they can be
activated into mesenchymal stem cells, exhibiting their
homing, trophic and immunomodulatory roles [9].

Mesenchymal stem cells may be harvested from
various tissues including adipose, bone marrow, syno-
vium, and umbilical cord, as well as from peripheral
blood. Thus far, the most frequently used source to
treat cartilage lesions is derived from bone marrow.

Bone Marrow—Derived MSCs and Bone Marrow
Concentrate

Bone marrow concentrate contains bone marrow—
derived mesenchymal stem cells, hematopoetic stem
cells, platelets (containing growth factors), and cytokines.

Bone marrow cells consist of erythroblasts, neutrophils,
eosinophils, basophils, monoid cells (monocytes con-
taining mesenchymal stem cells and macrophages),
lymphocytes, and plasma cells. These cells are present in
various stages of differentiation [10]. The hematopoietic
progenitor cells can morph into mesenchymal stem cells,
differentiate into chondrocytes, and are more osteoin-
ductive than adipose-derived cells [11]. Current research
on undifferentiated colonization, functional bioactive
components, and mechanisms of action for bone mar-
row—derived mesenchymal stem cells has yielded
promising basic science results [6,11,12].

The anti-inflammatory and immunomodulatory prop-
erties of bone marrow—derived mesenchymal stem cells
are essential in mediating tissue repair. The paracrine
behavior of secreted bioactive growth factors, cyto-
kines, and chemokines is responsible for the many
functions of the mesenchymal stem cell immune
response and healing potential [13]. Hematopoiesis is
supported by bone marrow—derived mesenchymal stem
cells through production of stem cell factor (SCF),
interleukin (IL)—6, lymphocyte inhibitory factor (LIF),
granulocyte macrophage-colony stimulating factor (GM-
CSF), granulocyte-colony stimulating factor (G-CSF), or
macrophage-colony stimulating factor (M-CSF) [14,15].
In addition, bone marrow—derived mesenchymal stem
cells have been shown to exhibit homing to areas of
inflammation through stromal-derived factor—1 (SDF-1)
and the subsequent up-regulation of chemokine recep-
tor type 4 (CXCR4) receptors on the cell surface [16,17].

After bone marrow aspiration, bone marrow con-
centrate is easily prepared using centrifugation and is
available for a same-day injection procedure with min-
imal manipulation of cells, thus complying with U.S.
Food and Drug Association (FDA) restrictions. Bone
marrow concentrate is generated through density-
gradient centrifugation of bone marrow aspirate. Bone
marrow concentrate contains bone-marrow—derived
mesenchymal stem cells, also known as bone marrow
stromal cells, which have demonstrated benefit in
facilitating the regeneration of cartilage.

A case study [4] demonstrated the regenerative po-
tential of cultured bone marrow stromal cell therapy
examining the use of mesenchymal cells in patients with
meniscus and cartilage repair. Twenty-four weeks after
percutaneous injection into the affected knee joint, the
study reported significant increases in cartilage and
meniscus volume, as seen on magnetic resonance imaging
(MRI), with the patient attaining increased range of mo-
tion and decreased pain scores. Pilot studies have de-
monstrated improved patient pain scores and functional
status after cartilage defect treatment with cultured bone
marrow stromal cells [18]. An institutional review board—
approved registry (Regenexx, IORG0002115) started in
2005 is currently collecting outcome and adverse effects
data from more than 2500 patients who have received
bone marrow concentrate injection treatment for various
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orthopedic conditions. Preliminary and yet unpublished
data collected from 539 cases of bone marrow concen-
trate application in the knee have demonstrated positive
results. Of the patients who have returned for follow-up to
date, 145 patients at 1 month, 98 patients at 1 year, 30
patients at 2 years, and 11 patients at 3 years, improve-
ment in symptoms was demonstrated in 40%, 52%, 60%,
and 68%, respectively [19].

In 2012, Emadedin et al [20], in a case series of 6
patients with severe osteoarthritis of the knee treated
with cultured bone marrow stromal cells, demonstrated
increased cartilage thickness and decreased edematous
subchondral patches in 3 of the 6 patients, using MRI.
Initial improvement in pain and function were reported;
however, 6 months postinjection of cultured bone
marrow-derived mesenchymal stem cells, all patients
presented with recurring pain and decreased walking
abilities [20]. Notably, the patients were all women
volunteers (average age, 54.56 years), with 4 of 6 (67%)
having a body mass index above 30 and were in need of
joint arthroplasty.

The authors of this review reported our preliminary
and yet unpublished clinical outcomes using bone
marrow concentrate in 125 patients receiving hip, single
knee, bilateral knees, shoulder, ankle, or cervical zyg-
apophyseal joint bone marrow concentrate injections
[21]. In all, 87 patients had both pre- and postinjection
pain scores available for review, which demonstrated a
71% reduction in overall pain at a median follow up of
148 days, which was statistically significant. When
comparing data from 87 patients with pre—post pain
(complete) versus 38 patients with pre or post missing
(incomplete) data, there was no evidence of selection
bias, as both groups had similar characteristics (eg, age,
body mass index, follow-up time, satisfaction).
Comparing statistically significant results from all
treated anatomic regions revealed that the single knee
and bilateral knee injections had the largest improve-
ment in pain score compared to the other joints
treated. Furthermore, 92% of patients reported satis-
faction with the procedure, and 95% of patients indi-
cated that they would recommend the procedure to a
friend. Contrary to prior reports in the literature of an
inverse relationship, age had no correlation with out-
comes in this cohort of patients up to 79 years of age
reporting positive results. Bone marrow concentrate
therapy has also been used as an adjunct therapy
postoperatively to accelerate healing after procedures
such as arthroscopic debridement, meniscal trans-
plantation, and subchondroplasty [22]. There is some
early evidence that this may improve the surgical re-
sults, but further studies are needed in this area.

Avascular Necrosis

AVN is a devastating disease characterized by the
bone death caused by an interruption of the blood

supply [23,24]. MRI studies have indicated that the
conversion of red to fatty marrow occurs prematurely in
some patients with AVN at the upper end of the femur.
Consequently, intramedullary vascularity is altered; this
may be a risk factor for osteonecrosis, because changes
in the bone marrow and bone remodeling are linked.
Another consequence is the lack of osteogenic cells and
osteocyte death [25]. AVN presents often in young pa-
tients [26] and, without timely intervention, progresses
to bone collapse and osteoarthritis, often resulting in
unmanageable pain and disability [27]. Thus, early
intervention is paramount to accomplish joint preser-
vation [28]. Early AVN treatments remain controversial,
as standard indications have not yet been established
[27]. Because increased cell death and altered vascu-
larity are common features of AVN [28], it is believed
that blood vessel regeneration and collateral circulation
are the most effective ways to break the pathological
cycle of AVN [29].

Autologous bone marrow transplantation was pro-
posed for the treatment of osteonecrosis in 1990 [25].
Researchers have applied intravascular infusion of
mesenchymal stem cells to treat a variety of diseases,
including AVN [30-38]. Intravascular infusion of mesen-
chymal stem cells is reported to have the advantage of
minimal invasiveness and convenient operation, with
fewer complications than core decompression [30-33].
Bone marrow has the hematologic component and the
stromal system containing the mesenchymal stem cells
[38]. The bone marrow is typically injected into the
femoral head using a small trephine (Mazabraud, Collin,
France). The instrument is introduced through the
greater trochanter, as in conventional core decom-
pression. Its position in the femoral head and in the
necrotic segment is monitored with fluoroscopy. Hen-
drich et al reported retrospective data on the clinical
and radiological progress of 101 patients with various
bone healing deficiencies [39]. The study included
37 necroses of the head of the femur, 32 avascular
necroses/bone marrow edema of other localization, 12
non-unions, and 20 other defects. The application of
bone marrow concentrate was performed in the pres-
ence of osteonecrosis via a local injection as part of a
core decompression (n = 72) or by the local adsorption
of intraoperative cellular bone substitution material
(scaffold) incubated with bone marrow concentrate
during osteosynthesis (n = 17) or in further surgery
(n = 12). Positive clinical and radiographic effects
without complications were reported at 14-month
follow-up [39]. Autologous bone marrow concentrate
treatment has been studied for corticosteroid-induced
osteonecrosis of the femoral head in systemic lupus
erythematosus. At a minimum follow-up of 3 years,
significant improvements in pain and Harris Hip Score
were observed, suggesting therapeutic osteogenesis for
corticosteroid-induced osteonecrosis of the femoral
head in systemic lupus erythematosus [40].
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Kumar Sen et al reported on 51 osteonecrotic hips in
40 patients who were randomly divided into 2 treat-
ment groups [41]. Patients in group A (25 hips) were
treated with core decompression, and those in group B
(26 hips) received autologous bone marrow mono-
nuclear cell instillation into the core tract after core
decompression. The clinical score and mean hip sur-
vival were significantly better in group B than in group
A. Adverse prognostic features at initial presentation,
including poor Harris Hip Score, radiographic changes,
edema, and/or effusion on MRI had significantly better
clinical outcome and hip survival in group B than in
group A [41].

Targeted intra-arterial delivery has been used as a
strategy for intravascular implantation of stem cells
[42]. In 2013, Mao et al reported their 5-year results
using the medial circumflex femoral artery to deliver
concentrated autologous bone marrow mononuclear
cells from bone marrow harvested from the anterior
iliac crest to treat AVN of the femoral head. In all, 72
of 78 hips (92%) achieved a satisfactory clinical result,
whereas only 6 hips (8%) progressed to clinical failure
and required total hip arthroplasty. The mean Harris
Hip Score increased from 59 points at baseline to 74
points at 60 months. Five years after the treatment, 3
of 10 hips (30%) in Ficat stage lll had deteriorated to
clinical failure, whereas only 3 of 68 hips (4%) in a
combination of Ficat stages | and Il had progressed to
clinical failure (P < .05). Kaplan-Meier survival anal-
ysis showed a significant difference in the time to
failure between the precollapse hips (Ficat stages |
and I) and the postcollapse hips (Ficat stage Ill) at 5-
year follow-up (log-rank test; P < .01). No complica-
tion was found in any patients. They concluded that
targeted intra-arterial delivery of autologous bone
marrow mononuclear cells via medial circumflex
femoral artery is a safe, effective, and minimally
invasive treatment strategy for early-stage osteonec-
rosis of the femoral head. It is capable of relieving
symptoms, improving hip function, and delaying pro-
gression of the disease. The clinical outcome appears
to be better when it is applied before the collapse,
with early intervention.

Fractures

Electron microscopy has shown that bone marrow
cells are responsible for the manufacturing of the bony
callus. Consolidation of a fracture is often delayed in
heavy smokers and drinkers. There is a significant adi-
pose involution of the bone marrow in these patients
and therefore a potential decrease in progenitor cell
number. Challenges in consolidation of a fracture may
be connected to an overall deterioration in the numbers
of progenitor cells in the bone marrow from underlying
physiologic obstacles [24].

Bone marrow aspirate contains osteoprogenitor cells
that have osteogenic and osteoinductive properties
[22]. Bone marrow aspirate from the iliac crest has been
applied to nonunion sites with limited morbidity; how-
ever, the number of stem cells available from bone
marrow aspirate is limited. A trocar identical to that
used to aspirate the marrow is generally placed intra-
osseously, either at the site of the pseudarthrosis or in
the ends of the fracture adjacent to it. Typically, weight
bearing is not allowed during the first month after bone
marrow transplantation, to avoid mechanical instability
interfering with the progression of tissue regeneration
and healing. After 1 month, after callus is observed on
radiographs, partial weight bearing is allowed with
plaster or external fixation. A period of 1 month is
observed between partial weight bearing and full
weight bearing, with radiographic monitoring for
cortical bridging or removal of fracture lines, after
which the casting or fixation is removed [24].

Samir Kassem et al published results on 20 patients
with internally fixed fractures with delayed union or
nonunion with a mean of 9.65 months between initial
surgery and marrow injection [43]. Of the 20 frac-
tures, 19 achieved clinical and radiological union, on
average after 2.95 months. Padha et al studied 50
cases of post-traumatic delayed and non-unions and
noted that 46 of 50 cases (92%) had successful union,
whereas 4 had failures, with percutaneous bone
marrow injection [44].

Braly et al reported the outcomes of percutaneous
autologous bone marrow injection for nonunion or
delayed union of the distal tibial metaphysis in patients
with prior plating [45]. Of the 11 patients, 9 attained
bony union within 6 months of bone marrow injection.
The authors concluded that percutaneous autologous
bone marrow injection is a minimally invasive, safe, and
inexpensive treatment option for distal metaphyseal
tibial nonunions or delayed unions after internal fixation
and should be considered when the retained hardware is
intact and stable [45].

Hernigou et al reported their results in 60 non-
infected atrophic nonunions of the tibia in which a
volume of 20 cm? of bone marrow concentrate was
injected [46]. They concluded that percutaneous
autologous bone-marrow grafting is an effective and
safe method for the treatment of an atrophic tibial
diaphyseal nonunion. Importantly, they also noted
that the efficacy is related to the number of pro-
genitors in the graft, and the number of progenitors
available in the iliac crest bone marrow aspirate was
less than optimal without concentration [46]. Various
aspirations and cell concentration techniques have
been used to increase the number of progenitor cells,
with reported union rates ranging from 62.5% to 90%
[46-50]. Notably, these reports are of case series,
lacking control groups to differentiate between the
effect of the bone marrow aspirate or bone marrow
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concentrate and the other concomitant interventions.
Importantly, how a bone marrow aspirate injection
into a long-standing nonunion results in bone union
without debridement of the intervening fibrous tissue
remains unknown.

Discussion

Mesenchymal stem cells are being used for their
therapeutic potential to enhance the regeneration of
cartilage and bone to prevent or modify disease pro-
gression and bone marrow concentrate, with its
mesenchymal stem cell and hematopoetic stem cell
populations, along with abundant growth factors, ex-
hibits anti-inflammatory, immunosuppressive, osteoin-
ductive, and chondrogenic qualities. The exact
mechanisms of action of bone marrow concentrate
remain unknown, however, it is postulated that the
cells either induce proliferation and differentiation of
resident stem cells, and/or possess innate differenti-
ation potential. Along with mesenchymal stem cells,
hematopoetic stem cells, and progenitor cells, exo-
somes are also considered to have a possible role in
facilitating regeneration, particularly in secreting
proteins that may direct repair [51]. An exosome is a
nanoparticle or secreted granule found in blood,
saliva, and stem cell cultures, which has a function in
cell-to-cell communication, paracrine signaling, auto-
crine signaling [51]. Future research may focus on the
transfer of genetic information, which is now thought
to occur with exosomes. Watson reported that the key
to understanding how cell or platelet-based therapy
works may not be the cell itself but understanding how
the secreted exosomes work, suggesting an influence
on exosome production, content, secretion, and se-
lection of specific target cells [51]. Further studies are
needed to better understand the role of bone marrow
concentrate therapy in reducing pain and increasing
function in patients with musculoskeletal disease.
Future exploration through dosage-based trials,
bioactive adjuncts, and protein scaffolding may reveal
the optimal method for application of regenerative
medicine. Clinically, treatment of patients with bone
marrow concentrate is readily performed by visualized
guided needle injection for musculoskeletal disease
therapy. Further studies are needed to determine the
exact mechanisms of action among the cells, growth
factors, and exosomes, as well as the long-term dura-
bility of the tissue treated.

Although sufficient human safety and efficacy data
are increasing, there are sparse data for the thera-
peutic effectiveness of same-day bone marrow
concentrate therapy in patients with musculoskeletal
disorders. There is no standardized technique for bone
marrow concentrate or injection protocol at this time.
Many significant questions remain unanswered, such as

the ideal cell harvest technique, cell preparation, as
well as optimal windows for various indications and
injection protocols. These early regenerative medicine
therapies will likely serve as precursors for more
customized, refined cellular therapies using serum and
genetic biomarkers to better understand the mecha-
nism of action and to identify optimal methods of
treatment. The integration of mesenchymal stem cell
therapy into routine clinical use is intriguing but must
be preceded by the effective demonstration of long-
term safety and efficacy through publication of
rigorous research studies.
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