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Abstract

Low back pain affects more than 80% of adults. A proportion of these adults develops chronic low back pain (CLBP) and becomes
disabled by their condition. CLBP is expensive to diagnose and treat and in terms of associated loss of productivity in the work place
setting by affected individuals. Although challenging, the source of CLBP can be identified. Contemporary literature contains several
studies that have established prevalence estimates for various structural sources of CLBP. In young adults, the intervertebral disk is a
common source of CLBP, once it incurs annular injury that heals incompletely. Effective treatment for painful disks currently is an
unmet clinical need. In older adults, the facet and sacroiliac joints are more commonly responsible for CLBP. Although certain
minimally invasive techniques do exist for these painful joints, an effective restorative intervention has yet to be established.
Annular injury precipitates a physiologic response that can lead to a catabolic state within the disk that impairs disk restoration. Cell
loss is a feature of this process as well as the pathophysiology associated with painful facet and sacroiliac joints. Cellular supple-
mentation is an attractive treatment strategy to initiate the repair of an injured lumbosacral structure. The introduction of
exogenous cells may lead to increased extracelluar matrix production and reduced pain and disability in diskogenic CLBP. Compelling
data in animal studies have been produced, stimulating Food and Drug Administration—regulated trials in humans. Numerous
questions remain regarding cell viability and sufficient native nutrients to support these cells. Clinical research protocols have

focused predominantly on diskogenic CLBP, and very few have addressed painful facet and/or sacroiliac joints.

Introduction

Chronic low back pain (CLBP) and chronic neck pain
are common and expensive clinical scenarios. It has
been implied, for example, that CLBP cannot be diag-
nosed [1-3]. Yet, certain clinical features can help
predict its etiology [4,5]. Accurately determining the
source of symptoms is not a futile attempt. If the exact
structural source of CLBP or chronic neck pain can be
identified, then perhaps a definitive treatment can be
directed at the appropriate structure. Understanding
how and why such a structure becomes symptomatic
then becomes critical in designing a sensible treatment.
Similarly, reliable and predictive metrics for rendering
this diagnosis are equally important if such measures
can help predict a treatment response to the said
intervention.

Numerous publications have reported prevalence es-
timates for various structural sources of CLBP [5,6]. The
intervertebral disk is a common origin of CLBP and is
estimated to affect 39%-43% of symptomatic adults
[5,6]. CLBP pain typically arises from nonhealing

annular fissures [5-8] and typically affects young and
middle-aged adults [5]. Facet joint—mediated low back
pain (LBP), followed by sacroiliac joint pain, become
more prevalent in patients with CLBP who are closer to
60 years of age [5]. Clinical studies report the preva-
lence of facet joint pain is 32%, and sacroiliac joint pain
is 18% of adults with CLBP [5,9,10].

The subspecialty of interventional spine care uses a
structure-specific diagnostic approach to LBP. Such logic
implies that an accurate diagnosis leads to effective
treatment; however, optimal treatment for a common
source of CLBP—persistently painful lumbar interver-
tebral disks—has not yet been developed. Spine fusion,
artificial disk replacement, intradiskal heating, and
intradiskal neurolytic agents have not consistently per-
formed at acceptable levels. A reactionary approach is
the common theme among these treatments rather than
a reparative or regenerative concept. An alternate
strategy of stimulating repair of an injured, painful disk
is appealing for multiple reasons. Reducing pain and
disability associated with CLBP would address more
immediate needs. Yet, it is also reasonable to wonder
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whether the application of a reparative technology
would help slow down or reduce onset of the degener-
ative cascade and hence curtail conditions as the spine
ages such as spinal stenosis.

Determining how and when to intervene to introduce
regenerative techniques requires understanding the
balance among the interdynamics of disk biology and
pathophysiology. Disk degeneration is complex but
could be described as a consequence of the nonhealing
of an annular fissure occurring after diskogenic injury.
The features of disk degeneration include reduced
nutrition and metabolic byproduct removal, altered
biophysical context, cell loss, changes in matrix turn-
over, and altered biomechanics. Biologic regenerative
treatments for painful intervertebral disks presumably
must address each if not all of these factors; focusing on
which of these factors is perplexing and accounting for
the affected individual’s genetic predisposition is a
relative unknown.

The scope of this article will be restricted primarily to
the current state of affairs regarding the intradiskal
cellular supplementation platform. Such consideration
requires an overview of the pathophysiology of the con-
dition that indicates treatment with such technologies.
Cell therapy approaches have not been explored in as
much detail for painful lumbar facet and sacroiliac joints
because these conditions are less prevalent and currently
have reasonably effective treatments available.

Painful Intervertebral Disks
Pathophysiology

Annular fissures [7] (Figure 1) are the morphologic
substrates of diskogenic CLBP and are a distinguishing

Figure 1. Postdiskography computed tomography axial cut demon-
strating posterior, midline radial fissure (arrow) with circumferential
outer annular extension.

feature of internal disk disruption (IDD). IDD is a con-
dition in which derangement of substructures internal
to the intervertebral disk result in pain while the
external contour of the disk remains relatively unre-
markable. In other words, IDD is a different condition
than a herniated nucleus pulposus—the latter is
defined partially by the volume of the herniated ma-
terial external to the disk’s external contour. Age-
related changes in the disk, often times referred to as
degeneration, are not necessarily indicative of a clini-
cally painful intervertebral disk [7]. The medical spine
community has come to understand that advanced im-
aging evidence of degenerative abnormalities is not
absolutely diagnostic for IDD. Therefore, the degener-
ative cascade itself should not serve as the sole target
of biologic treatments.

Newly innervated and vascularized granulation tissue
flanks these fissures that extend from the nucleus
through the outer annulus [8,11-13]. In contrast, there
is a paucity of innervated, vascularized granulation tis-
sue in areas remote from these fissures within symp-
tomatic disks and in degenerated but painless lumbar
disks [8]. The innervated granulation tissue along these
annular rents is a distinct histologic characteristic of IDD
in patients with CLBP [8,11-13]. When performed by a
technician by following stringent operational criteria,
provocation lumbar diskography (Figure 2) can be used
reliably to detect the annular fissures responsible for
CLBP [7,14,15]. Anesthetizing these painful fissures
after diskography reduces clinical LBP during provoca-
tive movements [16]. Evidence exists that supports the
concept that these innervated annular fissures are a
leading reason for diskogenic CLBP. Injury of the annulus
catalyzes an attempt at repair typified by: inflammatory
reaction [8], macrophage and mast cell invasion, and
cytokine (interleukins-1, -6, and -8; tumor necrosis
factor-o; proteoglycan-2) and growth factor (basic
fibroblast growth factor, transforming growth factor-)
release. These changes culminate in a disk structure
with altered mechanics and impairment of chondrocyte
function [8,13,17-24].

Treatment Objectives

Either enhancing the accumulation of extracellular
matrix or inhibiting its degradation theoretically re-
verses disk degeneration by rehydration. Specific
chemical agents can be introduced into the disk by
direct injection to: (1) stimulate proteoglycan produc-
tion by protein growth factors or (2) inhibition of the
cytokines that degrade/debase proteoglycans. A num-
ber of growth factors promote matrix accumulation,
whereas certain cytokines impede matrix synthesis and
accelerate its catabolism. Manipulation of gene ex-
pression, particularly transcription, rather than inject-
ing preformed protein factors, is another method of
regulating matrix turnover. Agents that protect against
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Figure 2. Intraoperative, fluoroscopic image of disk stimulation of L4-5
and L5-S1. The vertical arrow depicts filling of the annular fissure by
contrast material.

cell death or promote mitosis may hold value in disk
regeneration, given the relative avascularity of the disk.
Structural repair of the annular fissure may be more
successful if disk degeneration is arrested and/or
reversed.

Intradiskal biologic treatments for painful interver-
tebral disks should address the catabolic state inherent
in these disks as well as counter or reverse the degen-
erative changes. Yet, a defining feature of successful
biologic treatments will likely include healing the
annular tear itself as well as the degradation initiated
by the annular tear. Characteristics of painful disks such
as reduced oxygen tension, acidic pH, modic endplate
changes, and desiccation will influence the likelihood of
any injected therapeutic agent’s ability to produce
positive results. For example, reduced oxygen tension
and pH may reduce the longevity of an injected biologic
agent. Endplate changes and disk desiccation could
impede the nutrient supply needed to support newly
injected biologic agents. Our current understanding of
these interdynamics is still evolving. Although different
intradiskal biologic strategies (growth factors, tissue

scaffolding) are being pursued, cellular supplementa-
tion is the one strategy with compelling contemporary
human data.

Cellular Supplementation

Cellular attrition is a consequence of degeneration,
and these native cells may be less responsive to exog-
enous growth factors [25]. Hence, the introduction of
cells capable of regenerating disk tissue may potentially
halt or reverse the degeneration associated with IDD.
Anabolic and anticatabolic effects and the depth of
in vitro and animal data are advantages of the cellular
supplementation strategy. Yet, the viability of these
new cells in the setting of limited cellular nutrition and
differentiation signals, and concern whether the extra-
cellular matrix produced by these is similar to native
matrix, are acknowledged disadvantages.

Nonetheless, cells from a variety of sources have
been explored. Autologous (ie, from the patient) sour-
ces include native disk cells and mesenchymal stem
cells (MSCs) accumulated from bone marrow. Intuitively,
the cells collected from the patient’s own degenerated
disks are less attractive because they would likely be
inherently abnormal and poorly suited to act as an agent
of repair. The premise for autologous disk cell trans-
plantation has been established with the use of rat [26]
and canine [27,28] models. Autologous human disk cells
gathered during therapeutic diskectomy have been
evaluated, and results from a 2-year prospective,
controlled, randomized, multicenter study are prom-
ising [28-30]. Obtaining pure nucleus pulposus cells free
of other cells (eg, fibroblasts and macrophages), how-
ever, is challenging [29,30]. The batches of autologous
stem cells obtained from the patient’s own bone
marrow through density centrifugation and adherence
to plastic probably do not contain a high concentration
of pure homogenous mesenchymal cells with defined
characteristics. Human adipose-derived MSCs are
abundant and easy to harvest and have become a focus
of interest for application to diskogenic CLBP [31].
Commercially available techniques currently are under
development [32].

Therefore, the use of autologous progenitor cells,
regardless of their source, calls for an ex vivo expansion
of the cells after being immunoselected in preparation
for implantation—an expensive process [33]. Cell
expansion, however, currently is not approved for clin-
ical use outside of the Food and Drug Administration—
regulated premarket studies of new technologies.
The use of allogeneic (ie, obtained from same species
subjects other than the patient) MSCs may be more
cost-effective. MSCs are self-renewing, undifferenti-
ated, pluripotent cells with the capacity to differen-
tiate into osteoblasts, chondroblasts, and adipocytes
[34-38]. MSCs assume an intervertebral disk-like
phenotype after induction by transforming growth
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factor-f, dexamethasone, and ascorbate [39], allowing
the creation of a universal donor line of these cells.
Bone marrow [40-42] stromal cells have been the
studied most extensively among the available sources
of such cells. In animal models, autologous bone
marrow MSCs have been shown to survive and replicate
8-48 weeks after transplantation [42-44]. A single in-
jection of MSCs into the degenerate ovine disk nucleus
pulposus restored proteoglycan content and disk height
6 months after injection [45]. On the basis of these
animal data, a Food and Drug Administration—
regulated, phase 2 safety and effectiveness study of a
single intradiskal injection of allografted MSCs is un-
derway in humans [46].

This phase 2, randomized, controlled study of allo-
geneic MSCs injected into a single, mildly degenerate
lumbar intervertebral disk has produced preliminary
data [47]. At 12 months after injection, 69% (95% con-
fidence interval [95% Cl] 53%-86%) of patients treated
with MSCs experienced >50% reduction in LBP.
Conversely, 33% (95% Cl 19%-48%) of control patients
achieved this end point. Similarly, a greater proportion
of patients who received MSCs experienced minimal
residual LBP at 12 months compared with controls.
Fifty-two percent of the treatment patients (95% Cl 34%-
70%) and 18% (95% ClI 6%-30%) of the control subjects
reported low-intensity LBP (<2/10) at 12 months after
injection. Hence, on statistical grounds the MSC-treated
group fared better regarding meaningful reduction of
LBP. A large, pivotal phase 3 follow-up study is under
development.

Articular chondrocytes are phenotypically similar to
disk cells [48]. Juvenile chondrocytes (JCs) maintain an
increased capacity to synthesize extra cellular matrix
compared with adult cells [49]. Furthermore, JCs lack
cell surface markers that trigger immune responses [49].
Thus, culture-expanded JCs may survive transplantation
in unrelated recipients.

A 15-subject pilot study of a single intradiskal injec-
tion of JCs into diskography proven painful lumbar disks
has yielded promising results [49]. At 1 year after in-
jection, the mean numerical pain score and Oswestry
Disability Index both decreased significantly. Although
primarily only group data were published, 87% (95% ClI
78%-96%) of treated subjects experienced a 30% reduc-
tion in Oswestry Disability Index scores [49]. On the
basis of these early findings, a larger randomized,
controlled trial has been launched [24,50].

Allogeneic adult chondrocytes are now being har-
vested and expanded in the laboratory after immuno-
selection. Intervertebral disk tissue is procured from
adult human donors, which undergoes a multistep pro-
cess to select, expand, and enrich progenitor cells.
These cells are multipotent for mesenchymal lineages
capable of exogenous production of proteoglycan and
collagen II. Although untested in human subjects, this
emerging cell therapy technology has safely improved

disk height and proteoglycan and collagen content in
animal models [47]. A phase 1 human clinical trial is
being developed.

The survival of the transplanted cells for a sufficient
period of time for them to accomplish their intended
objective is of peak interest. As discussed, a degen-
erated disk’s interior is acidic, hypoxic, and lacks nu-
trients. Transplanted cells may need to be prepared to
survive within this environment after intradiskal injec-
tion, possibly by genetic manipulation, to restore
extracellular matrix under these suboptimal conditions.

Painful Facet and Sacroiliac Joints
Pathophysiology

The lumbar facet joint (FJ) is a diarthrodial synovial
joint encased by an inner synovial membrane and outer
joint capsule containing articular and subchondral
cartilage, an intra-articular meniscus, and rheological
synovial fluid. Nociceptive C-type fibers have been
confirmed on both the synovial membrane and joint
capsule, and group Il high-threshold, slow-conducting
mechanosensitive, somatosensory units are present in
both the articular and subchondral cartilage [51-54]. It
seems sensible therefore that the synovial membrane,
joint capsule, and articular and subchondral cartilage
can transmit pain.

The progression of the lumbar spine degenerative
cascade results in disk desiccation and loss of disk
height. Consequently, an escalating compressive load is
shifted onto the posterior elements [55], leading to
degeneration and increased excitability of the synovial
membrane nociceptive nerve fibers, joint capsule, and
articular and subchondral cartilage [51-53,56]. In
experimental models of osteoarthritis, these articular
nerves become hyperalgesic, spontaneously discharge,
and are sensitive to non-noxious joint movements [56].
Arthritic lumbar FJs can become symptomatic, leading
to pain and disability [5]. A hallmark of osteoarthritis is
the imbalance of cartilage and matrix degradation and
their synthesis resulting in a catabolic state. Compo-
nents of the extracellular matrix include proteoglycans
comprising glycosaminoglycans attached to a backbone
of hyaluronic acid (HA) [57], which provides the visco-
elastic quality of synovial fluid affording lubricant and
shock absorber functions [58]. The viscoelasticity of the
synovial fluid is reduced as the concentration and the
molecular weight of intra-articular HA decrease as a
result of the arthritic state. As these lubricant proper-
ties decrease, destruction of cartilage and bone ensues.
Because of its viscoelastic properties, HA protects cells
and anatomic structures against mechanical overloading
[58,59].

The sacroiliac joint is the largest axial joint in the
body and on average has a surface area equal to 17.5
cm? [60]. A shear force can contribute to altered
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mechanics of the articulating components of the
sacroiliac joint [61]. Anatomical studies in cadavers
have detected nociceptors within both the joint capsule
and in the surrounding ligaments [62]. Furthermore,
clinical studies have documented evoking of LBP upon
capsular distension performed in asymptomatic volun-
teers [63-66]. Therefore, the sacroiliac joint is exposed
to injurious events and contains nociceptive fibers
capable of transmitting pain.

Treatment

A paucity of work has been completed in which au-
thors have investigated the role of biologic treatments
for lumbar facet and sacroiliac joints. Exogenous HA
enhances the synthesis of matrix proteins, glycosami-
noglycan, and proteoglycans; alters inflammatory me-
diators [59]; and reduces apoptosis of chondrocytes
[67], all of which collectively may promote or spare
intra-articular cartilage [59] in painful FJ arthropathy.
Exogenous HA may be able to balance the spectrum
away from cartilage degradation back towards its syn-
thesis [59].

Successive intra-articular injections of exogenous HA
(hylan G-F 20) into painfully arthritic lumbar FJs can
reduce LBP, disability, and improve sitting tolerance up
to 6 months after treatment. Patient satisfaction
improved and oral analgesics reduced similarly during
the first 6 months but not during the second 6 months
after treatment. The lack of a durable treatment effect
could be indicate that the injected exogenous HA ach-
ieved some analgesic effect via modulation of the
nociceptors within the joint. Although speculative,
injecting a smaller volume (0.5 mL) per injection and
completing more injections per joint may more suc-
cessfully reduce LBP over time by stimulation of matrix
proteins and chondrocyte proliferation. These pilot data
support the pursuit of follow-up, rigorous controlled
trials to better determine the effectiveness and safety
of viscosupplementation for FJ—mediated LBP. Although
this strategy does not involve cellular supplementation,
the act of introducing exogenous HA into an arthritic FJ
may promote native chondrocyte activity.

Although yet to be tested, the direct injection of
stem cells into painful lumbar FJs is supported by the
current promising findings of similar techniques for
painful arthritic knee joints [68,69] which, similar to
FJs, contain cartilage and synovium.

Conclusion

The most common structural source of adult CLBP is
the intervertebral disk. Painful disks suffer from non-
healing annular fissures. Emerging intradiskal biologic
treatment technologies should address both the annular
tear and associated degeneration. Effective intradiskal
biologic treatments will need to also improve the

biomechanical performance of the injured intervertebral
disk. Otherwise, cells supplemented into this inhospi-
table environment may not survive over time because of
a lack of adequate nutrients and harmful intradiskal
pressures. Ultimately, a multipronged approached may
prove optimal by combining different technologies, such
as tissue scaffolding for 3-dimensional proliferation and
lamellar cross-linking; cellular supplementation to pro-
duce matrix and reduce inflammation; and growth fac-
tors to stimulate the inserted cells. However, given the
current state of regulatory constraints, the process for
commercializing a product of multiple biologic technol-
ogies may be too prohibitive.
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